SOURCE: http://www.jybaudot.fr/Probas/binomiale.html Lois de Bernoulli et binomiale
Bienheureuse loi binomiale, qui montre tout l'intérêt de l'analyse combinatoire dans le cadre d'une loi de probabilité… Pour l’introduire, il est habituel d’évoquer préalablement la loi de Bernoulli. C'est d'ailleurs ainsi que la loi binomiale est abordée en classe de première. Si précisément vous êtes lycéen(ne), quelques passages de cette page risquent d'être franchement hors programme mais dans l'ensemble vous devriez y trouver de quoi balayer vos incertitudes, surtout si vous en complétez la lecture par celle de la page loi binomiale à la calculatrice...
La loi de Bernoulli
Il s’agit d’une loi discrète fort simple. Une variable aléatoire (v.a.) ne peut prendre que deux valeurs, 0 (échec) et 1 (succès). Au départ, il s'agit d'un choix arbitraire. Il faut juste définir ce qui sera considéré comme succès. Au sens probabiliste, le succès est une réponse positive à une question qui n'implique aucun jugement de valeur. Si l'on cherche des appareils en panne, alors le fait de trouver un appareil qui fonctionne est assimilé à un échec...
Cette v.a. binaire est parfois nommée variable de Bernoulli. À titre d'exemple, la réponse oui / non à une enquête est une variable de Bernoulli.
Par convention, on note p la probabilité que cette variable prenne la valeur 1 (donc, succès). C'est l’espérance mathématique de la loi. On peut écrire P(X = 1) = p. Évidemment, la probabilité d’obtenir 0 est 1 – p. Si par exemple on cherche l'espérance d'obtenir un six sur le lancer d'un dé, alors p = 1 / 6 (une chance sur six). La probabilité de rater le six est 5 / 6.
Et croyez-moi ou non, la variance est égale à p(1 – p).
La loi binomiale
Supposons que l’on réitère n fois la même épreuve de Bernoulli de façon indépendante, donc avec chaque fois cette même probabilité de succès p, alors nous sommes en présence d’une loi binomiale. S'il n'y a pas indépendance, c'est en revanche et sous certaines conditions la loi hypergéométrique qui est employée.
Ces deux paramètres n et p suffisent pour caractériser une loi de probabilité binomiale. Pour exprimer le fait que la v.a. X suive une loi binomiale de paramètres n et p, on écrit :
La formule déterminant la probabilité que la v.a. prenne la valeur k est la suivante :
Espérance et variance sont les mêmes que pour la loi de Bernoulli, mais multipliées parn. Si vous cherchez le mode, c'est la valeur entière comprise entre np – (1 – p) et np + p. Le skewness est égal à 0 (voir aussi la page kurtosis).
Je ne prendrai pas pour exemple des tirages de boules dans une urne. Question de principe. Nous ne sommes pas dans un désert de créativité ici…
Donc, autre exemple. Une machine-outil produit 1,2 % de pièces défectueuses. On contrôle quarante pièces prises au hasard (sachant qu'après inspection une pièce est remise avec les autres et peut éventuellement être revérifiée). Quelle est la probabilité de contrôler deux pièces défectueuses ? On a n = 40, p = 0,012 et k = 2.
Un arbre de probabilité permettrait de retrouver ce résultat mais, avec 40 tirages, il serait particulièrement énorme et son bénéfice pédagogique assez maigre... On s'en passera.
Soit dit en passant, la valeur de la combinaison (premier terme de la multiplication ci-dessus, parfois nommé coefficient binomial) peut être retrouvée par le triangle de Pascalpuisque cette loi n'est ni plus ni moins qu'une application du binôme de Newton, comme son nom l'indique. La combinaison permet de déterminer le nombre de branches de l'arbre pondéré qui satisfont à la condition X = k.
Sur un lot contrôlé, nul besoin d'être agrégé de maths pour deviner l'espérance du nombre de pièces défectueuses, soit 40 × 0,012 = 0,48 pièce.
Bref, si n est grand, c'est-à-dire au moins une trentaine d'observations, et si p n'est pas trop proche de 0 ou de 1, la loi binomiale converge vers une loi normale d'espérance np.Son écart-type est la racine carrée de npq. C'est une application du théorème de limite centrée. Une illustration se trouve en page seuil de rentabilité probabilisé.
L'approximation est réalisable par une loi de Poisson si p est petit (np devient alors le paramètre lambda de cette loi). C’est manifestement le cas de l’exemple ci-dessus. Reprenons la formule de la loi de Poisson, où np = 0,48 :
Au niveau de précision choisi, les résultats sont donc identiques.
Ajoutons que si l'exemple choisit consistait à trouver un nombre précis de pièces, il est fréquent qu'une recherche porte sur un INTERVALLE (par exemple, AU MOINS deux pièces défectueuses). On peut alors additionner les probabilités mais c'est juste une technique que des enseignants retors réservent à leurs étudiants. On peut aussi utiliser une table de probabilités cumulées mais on ne la trouve pas partout. Il est possible d'obtenir une réponse avec une calculatrice mais la solution la plus simple est de disposer d'un tableur.
La probabilité de 0,071 ci-dessus est obtenue immédiatement avec Excel ou le classeur d'OpenOffice : =LOI.BINOMIALE(2;40;0,012;0). Pour un exemple avec Excel et des probabilités cumulées, voir en bas de la page test des signes.
Un tableur est l'outil idéal pour créer en quelques clics une table de loi binomiale ou un graphique représentatif. À titre d'exemple, le graphique en bâton ci-dessous montre les probabilité pour chaque X = k de la loi binomiale (100 ; 0,5). Accessoirement, ce type de graphique permet de visualiser divers intervalles de confiance...
|
ليست هناك تعليقات:
إرسال تعليق